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Abstract. I

Reported upon are experimental runs of an algorithm designed to maintain incremental optimality when
building tours for the Euclidean traveling salesman problem. Unlike the Lin-Kemighan edge exchange or Padberg-
Rinaldi branch-and-cut techniques which begin with suboptimal tours and proceed by iterating in an attempt to
converge upon or exceed the Held-Karp lower bound, the new algorithm strives to maintain optimality as each city is
insertd. In previous Army research at the CECOM Center for Signals Warfare, proofs were obtained to show that
the underlying search space for the Euclidean traveling salesman problem is piecemeal quartic and hyperbolic. To
exploit this new knowledge, the author has developed a dynamic programming algorithm which begins with a
baseline tour consisting of the outer (inner) convex hull of cities, and proceeds by adding a city at a time to the Ci
interior (exterior). How the city is inserted into the existing tour is dictated by a set of quartic and hyperbolic loci
which separate existing and hypothesized subtours from each other. The insertion may involve three different non-
linear operations: hyperbolic extension, quartic shunting, and quartic interchange. To test the efficacy of these
operators with regard to type I and 2 statistical errors, the algorithm as currently implemented is run against a
benchmark of city databases for which the optimal tours are known. For those runs which result in a suboptimal
solution, an explanation is sought to facilitate fixes to the formal design specification, and the code is subsequently
changed. In this paper, the most recent set of runs is analyzed and reported upon, and a prognosis for scaling up to
large databases is forecast. The theory predicts that :i run should consume time as a function of n3 , where n is the
number of cities; this bound is .:hecked empiric illy by plotting city size vs. CPU time for several databases.

Background.

The Euclidean traveling salesman problem [ETSP] is a long-standing problem in optimization, having
roots and primary development in the field of operations research, with ancillary developments in the fields of
computational geometry and graph theory. As is the case with many obtuse problems in mathematics, the ETSP
may be succinctly stated. Given a set of cities and the distances between each pair, find the shortest tour which
visits each city exactly once, except the start city, which is revisited at tour's end. A tour is simply a closed loop
connecting all the cities; the formal mathematical name for a tour is a Hamiltonian cycle. One of the interesting
facts discovered early on is that a tour is not permitted to cross itself [FI]. There are (n-l)! / 2 possible tours
through n cities, which is a combinatorially prohibitive number of operations to perform by brute force, so it is
therefore desirable to find an algorithm which arrives at a solution in polynomial time. The ETSP is a special case
of the general traveling salesman problem, the former bearing the distinction that the metrics involved are Euclidean
distances rather than arbitrary costs or weights.

To date, the Euclidean traveling salesman problem remains unsolved. By "unsolved", it is meant that no
one has developed a formal proof of optimality for a polynomial-time algorithm guaranteed to produce the shortest
tour. In the mid-seventies, it was proven that the ETSP is NP-hard [GI]. This is a somewhat less damning
complexity result than that obtained for the general traveling salesman problem, which belongs to the NP-complete
class of problems [G21. There have been two camps of researchers working on the Euclidean version of the problem,
with the earliest computational work dating back to the end of the second world war [L2]. The first camp has striven
to produce an exact solution to the problem, and in doing so has pioneered advances in the field of linear
programming, including such techniques as the simplex algorithm, branch-and-bound, and branch-and-cut [PI]. An
exact approach favors precision at the cost of performance. The second camp of researchers has settled for an
approximate approach, by resorting to heuristics which produce high quality solutions per unit of processing time.
The principal heuristic techniques are k-opt edge exchange (the most advanced of which is the iterated Lin-
Kemighan), simulated annealing, genetic algorithms, elastic bands, and neural nets [JlI. Generally, the approximate
techniques develop a solution with more speed than exact approaches, at the cost of precision. However, even this
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generality is moot, because some of the heuristic approaches render solutions orders of magnitude faster than others,
with only marginally inferior solutions.

Applications.

There are a myriad of applications for the traveling salesman problem. Among them are job scheduling,
resource-constrained scheduling, optimal component placement, minimal hookup wire, lowest transmission power,
and path-constrained network flow [L2, JIL. The structural similarities between the problems may be somewhat
subtle. For example, to map the traveling salesman problem onto job scheduling, the names of the cities are
replaced by job names, and the costs between cities are replaced by the job setup times between respective jobs. The
job times themselves are considered to be constants; the setup times between jobs turn out to be the crucial factor.

Some of the applications have been shown to be NP-complete problems (e.g., resource-constrained
scheduling and path-constrained network flow), and therefore have failed to yield to polynomial-time algorithms
[G21. Thus, it would seem preferable at this point in time to approach such problems with approximate techniques.
However, in the long term, if a polynomial-time exact solution may be obtained for the Euclidean traveling
salesman problem, then it may be feasible to map the resultant algorithm onto one of the harder problems in such a
way that a high quality (albeit suboptimal) solution is achieved. This mapping is arguably most suitable for that
class of problems for which the triangle inequality is valid.

Verifying the Optimality of a Tour.

To test a ETSP algorithm (whether it be exa~t or apprvL ,,L,,te) agairisi large datz .. ,.
have at hand some technique to verify an optLnai 3oluiton in pc'ynomial time. For city . .._ -

hundred or less, :t is possible to use a vaiiant uf branch-and-bound to check optimality in r,
[11]. However, when n becomes much larger than one hundred, certifying optimality begins to consuMz
unreasonable amovnts of time. It is for this reason ihai a technique based on computing L .:" ..

tour length has been developed [H1]. This quantity, known as the Held-Karp lower bound, L c.omputable h:
polynomial time, and empirical results indicate that it is consistently within two percent of optimal [JI. Scirti5te
in the field of operations research have made good use of the bound. Rather than strive for an optimal tour.
researchers instead attempt to come within a reasonable neighborhood of the Held-Karp bound.

The Discovery of the Non-linear Search Space for the ETSP.

Despite over forty years of intense study by computer scientists and operations research ana ysis, th.. ý .;
space for the Euclidean traveling salesman problem remained unspecified as of 1990 (i.e., it waa• tiot kiiuwn wi!( 'Ut
the mathematics of tour construction was linear, non-linear, or transcendental in the number ,f, tie:). n;hi-_' 7 ' ....
knowledge prompted the author to conduct experiments during the winter of 1990, in an attempt to characterize the
space by leveraging the recently developed field of computational geometry upon the problem. n 1968, researc.hexs
at the Johns Hopkins University reported upon a slight modification to a theorem due to Barachet to show that an
optimal tour must preserve the order of the convex hull of cities - the shortest tour must contain these cities in thb'
order in which they appear about the perimeter [BI, B21. This fact suggested that an experiment which inserts an
arbitrary city into a hull could serve as a valuable testbed in which to discover the geometric locus of equal hull
perturbation. A perturbation is a subtour which leads into the interior of the hull through two adjacent hull vertices,
to capture cities which do not lie on the hull. In conjunction with a perturbation we introduce the elliptic distance
between a segment and a point p, which is defined to be the sum of the distances from the endpoints of the segment
to p, minus the length of the segment.

When comparing a perturbed hull segment against another perturbed segment, one is actually comparing a
confocal system of ellipses against another, under a continuous spectrum of elliptic distances. The foci of the two
families of ellipses are r'. ctively the two endpoints of the hull segments being perturbed. In Army research at the
CECOM Center for Sigi 'arfare performed during the 1990 fiscal year, it was discovered that the search space
induced by the intersect; the two confocal systems of ellipses is in general fourth order (quartic), and in special
cases hyperbolic [C2]. ime non-linear behavior is manifested as more cities are added to the interior, which
means that the general sc.... n space is piecemeal fourth and second order regardless of the number of cities added to
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the tour from within the hull. Dynamic programming immediately suggested itself as an approach to the problem
which might provide the framework to keep track of the quartic and hyperbolic boundaries of equal tour perturbation
when a new city is added to the existing space. Armed with the the new information about the non-linear search
space, the author has proceeded to develop a dynamic programming algorithm to maintain incremental optimality
when building shortest Euclidean tours.

A Dynamic Programming Algorithm for the ETSP.

The algorithm is based on a principle of incremental optimality: the shortest tour containing k cities is a
quartic and hyperbolic function of the shortest tour containing k-I cities. Beginning with a baseline tour consisting
of the convex hull of cities (the smallest bounding polygon containing all of the cities), one city at a time is inserted
into the tour in an attempt to preserve the original optimality guaranteed by the hull. As currently specified by the
algorithm, theme are three types of topologies to maintain in parallel when developing a tour. First, the tour may be
simply extended by inserting the new city into the space between those two cities for which the elliptic distance is
smallest; this topology is termed extension space. A second topology is one in which the new city causes a shunt
to be formed between two existing perturbations, to form a new perturbation between the two older ones; this
structure is called shunt space. The final topology is one which deals with interchanges between perturbations which
are "across the hull" from each other, this structure is termed interchange space. Extension space is designed to
capture the hyperbolic discriminator inherent to extending an existing perturbation, whereas shunt and interchange
space are models of the quartic discriminator instructing when to perform a global merger of perturbations.

A nested hull decomposition is computed during a preprocessing step. The decomposition may be
computed in 0 In * log n I time, as proven by Chazelle [C1I. The nested hull structure, also known as the "onion",
is devised to control the order in which the interior cities are inserted. To limit the generation of greedy
perturbations, those cities nearest the outer hull are installed first. The set of hulls is visited one at a time, and each
hull is traversed in a counterclockwise fashion, until the set of all interior cities is exhausted. Therefore the order of
insertion is dictated by a major key equal to the ordinal number of the hull in which a city resides, with a minor key
equal to the relative counterclockwise position within the hull (N.H., there are exceptions based on the angle which
the city forms with the tour). An alternative strategy is to begin with the innermost hull (the core of the onion) and
probe outwards one hull at a time until all exterior cities are processed. Since the quartic and hyperbolic boundaries
extend both inside and outside the boundary defined by the current tour, the theory guarantees that it is legitimate to
process the nested hull decomposition in either direction, with the same optimal solution produced regardless of the
processing order. An example of bi-directional processing is demonstrated in the appendix for the capitals of the
forty-eight contiguous states of America.

The City Databases.

Seven sets of data (Fig. 1) are currently being used as a testbed for the dynamic programming algorithm.
The first is a ten city problem published by Barachet in 1957 [B I]. The optimal tour for this small problem is
discussed and derived below. The second set is a sixteen city problem which appears in a seminal computational
geometry textbook [P21. The third, fourth, and fifth sets are databases of twenty, thirty-seven, and forty-one cities
which were generated to exhibit non-random behavior, they respectively represent a hull containing a single loop of
interior cities; a block letter "E"; and a block letter "S". For these three databases, the shortest tours are not known
with certainty (insufficient resources precluded certifying optimality with the branch-and-bound tech i.que utilized by
the operations research community), but it is conjectured that they consist of the visually-obvious structured
boundaries of the hand-crafted figures. The loop dataset is discussed below, and a temporal history of the conjectured
optimal tour is contained in the appendix. The sixth dataset is a forty-eight city problem solved to optimality by
AT&T Bell Laboratories in 1985 (All. The development of its optimal solution is also contained in the appendix;
both an inside-out and outside-in nested hull traversal are graphically portrayed, with the same optimal solution
being obtained. The seventh and last dataset is a one hundred twenty-seven city probl-m formulated by the
University of Augsburg in 1989 [RI]; this dataset has recently been solved to optimality by the new algorithm, but
a detailed description of the optimal tour is not included here, since it will serve as a primary example in the
development of a theorem to be published in a forthcoming paper [C31.

Also described below is a set of experiments in which eighty sets of cities are generated at random to be
used as databases to test the analytically-derived time complexity bound for the dynamic programming algorithm.
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For these eighty databases, the optimal tour lengths are unknown but are not required, for the sole purpose in using
the cities is to statistically test the run time performance of the current implementation of the algorithm, independent
of the fact that the solutions developed may not be admissible.

Database Optimality Known? Length of Optimal Tour n

Barachet Yes 948 10
Preparat Yes 1774 16
Loop No 1919 20
E-figure No 1258 37
S-figure No 1770 41
Capitals Yes 3352 48
Augsburg Yes 4731 127

Figure 1. The seven benchmark databases, with associated optlmality Information. The tour
lengths are expressed as a function of pixels of the computer raster.

An Analysis of the Barachet Dataset.

Figure 2 is a visual graphic of a shortest tour evolving in time as interior cities are incrementally processed.
The data is the Barachet dataset, published in 1957 [B I]. The original constellation of cities is shown in the upper
left corner, followed by a graphic of the convex hull, which in this case is simply a square. The dynamic
programming algorithm then proceeds to add each of the five interior cities to the tour. The simple extensions,
represented by the HE operator, turn out to be not very interesting. The insertions which produce the most profound
changes are the interchange operators, designated Hs. As an example, the last state (frame nine) is produced by an
interchange. The extension shown in the next-to-last frame causes the upper perturbation to yield two cities to the
extended perturbation as at frame nine, while at the saame jrrn producing a new perturbation from the top, which was
seen once before at frame number three. Of course, the sequence would look quite different if the interior cities were
to be inserted in an order other than that dictated by the process of nested hull traversal, but the final tour would look
the same.

Hull HE HE Hs

HE HE HE HS

Figure 2. Incremental Optimality Portrayed for the Barachet Data

An Analysis of the Loop Dataset.

Figure 3 is a tabular description of the algorithmic logic manifested when processing the twenty city loop
figure (a graphic temporal history of the logic is contained in the appendix). Although the extension and shunting
operations are well represented, there are no cross-hull interchanges which occur in this database. The deferral
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operations occur because the city under consideration forms a more acute angle with the current tour than does some
other sample in the queue of interior cities. In such cases, the city forming the more acute angle is placed back in
the queue, and the other city is brought forward for processing. Actually, the deferral and extension operations are
mundane when compared to shunts and interchanges. The two interesting insertions for this dataset are the shunts
introduced by the addition of cities 19 and 112, both of which radically alter the global tour shape. In particular, the
insertion of city 112 causes the lower right portion of the tour to change from a "fishtail" shape to a concave loop.
It should be emphasized that the insertion of the cities in some other order might cause the ultimate loop behavior to
be displayed earlier, but the algorithm is designed to display the shortest tour for only the cities which are currently
entered. A partial tour for k cities may or may not structurally resemble the shortest tour for all n cities.

Entered City Insertion Operation Relevant Subtour

15 deferral
119 extension (4,19,20)
15 extension (4,5,19,20)
116 extension (20,16,2)
115 extension (20,16,15,2)
114 extension (20,16,15,14,2)
113 deferal
112 defdral
117 extension (20,17,16,15,14,2)
113 extension (20,17,16,15,14,13,2)
112 dCfemr
118 extension (20,18,17,16,15,14,13,2)
112 defdral
H7 extension (4,7,5,19,20)
112 deferral
16 extension (4,7,6,5,19,20)
112 deferal
18 extension (4,8,7,6,5,19,20)
112 deflral
19 leftsided shunt (3,9,8,7,6,4,5,19,20)
112 leftsided shunt (4,5,6,7,8,9,12,13,

14,15,16,17,18,19,20)
110 extension (4,5,6,7,8,9,10,12,13,

14,15,16,17,18,19,20)
111 extension (4,5,6,7,8,9,10,11,12,13,

14,15,16,17,18,19,20)

Figure 3. The dynamic programming result for the twenty city loop figure. The Insertions of
cities 19 and 112 produce back-to-back shunting operations, each of which radically alters the
visual appearance of the optimal tour. A temporal history or this example (the loop dataset) Is
contained In the appendix.

An Analysis of the United States Capitals Dataset.

The appendix concludes with two graphics which depict the development of the shortest tour for the forty-
eight capitals of the contiguous United States. The first graphic demonstrates the same approach described above for
the Barachet and loop datasets: i.e., a baseline tour consisting of the outer hull is established, and and the interior
cities are inserted incrementally by probing inward one hull at a time until all cities are exhausted. The first
interesting behavior occurs at row three, column five, with the introduction of Little Rock: Oklahoma City and
Jackson are interchanged into Little Rock's new perturbation. Another interchange occurs at row four, column two,
when Frankfort is extended into Charleston's perturbation, which subsequently causes Montgomery to be
interchanged from below. Yet another interchange occurs in row four, column six, when the introduction of
Cheyenne first causes extension space to transpose Bismarck with Pierre, and then forces the interchange of Salt
Lake City. The final interchange occurs in row five, column three, when the newly introduced city of Lansing
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compels the cities of Albany and Harrisburg to be absorbed into Lansing's perturbation. By far, the most dramatic
behavior is encountered at row six, column seven, when the introduction of Springfield forces a left shunt.
Springfield is originally attached by extension space between Nashville and Frankfort, but the shunt operator then
links it to Jefferson City and synthesizes a new perturbation issuing from the hull segment with endpoints
consisting of Baton Rouge and Tallahassee. The final tour shown in row six, column 2 was proven optimal by
AT&T Bell Laboratories in 1985 (A I].

Turning to the second graphic in the appendix concerning the forty-eight capitals, the alternative convex
hull approach is utilized. This time, the initial tour consists of the innermost hull in the nested decomposition,
with vertices comprised of Des Moines, Springfield, Indianapolis, and Columbus. The nested hulls exterior to this
hull are subsequently processed, beginning with the one nearest to the inner hull. Because the quartic and hyperbolic
loci remain valid regardless of the processing order, the same optimal tour is ultimately obtained at row six, column
two.

Some Remarks about the Augsburg Dataset.

The Augsburg dataset consists of the locations of one hundred twenty-seven beer gardens in the city of
Augsburg, Germany. This dataset has been solved to optimality by German researchers at the University of
Augsburg, using a variant of branch-and-cut [RI]. The same optimal tour is obtained by the dynamic programming
algorithm described in this paper. However, analysis of this dataset will not be described here, since it will serve as
the primary example in the development of a theorem to be published in a forthcoming paper [C3].

Scaling Up: a 532-City Dataset.

A five hundred thirty-two city dataset was developed by Shen Lin when he was employed at AT&T Bell
Laboratories, and represents the locations of AT&T telephone offices in the contiguous United States. A certificate
of optimality has been obtained for this data by the originators of the branch-and-cut algorithm [P1]. This database
is intriguing because it is the largest database certified to date for which the cities are randomly positioned in the
plane (a 2392-city dataset has been solved, but the constellation of cities is formed by repeating the same sinal
pattern of cities several times). The dynamic programming algorithm has not yet been brought to bear upon thiN
database, but it may be feasible to describe the result of its application in the same paper in which the one nundrWd
twenty-seven city solution is discussed.

Time Complexity: A Worst-case Analysis.

The dynamic programming algorithm is continuing to evolve as a research and development tool, and as
such remains suboptimal. Nevertheless, it is instructive to perform a worst-case analysis of the code as currently
implemented. A condensed algorithmic flowchart is shown at Figure 4. The label "In" is the input loop, in which a
new city is input from the front of the queue of unprocessed interior cities. Upon entry from the queue, the city is
processed by a routine which checks for intra-perturbation optimality. The new city is first compared against every
segment in the current tour to discover the segment of least elliptic distance. This segment may or may not contain
the new city's nearest neighbor, so a subroutine is called to check the tour length if an alternative hypothesis allows
the connection to occur. To encourage the gradual introduction of cities relative to the perturbed hull, if some other
interior city forms a larger angle with the current tour, it is brought forward for processing and the candidate city is
put on hold. The intra-perturbation routine concludes by reordering the city's perturbation if necessary to achieve
optimality.

Next, a global heuristic is applied to determine if some tour segment forms a larger angle with the newly
inserted city than the segment to which it was attached locally via the elliptic distance computation. The global
interchange operator attaches the city to such a segment if it exists, and triggers a quadratic matching operation in an
attempt to absorb cities from other perturbations. Next in the processing sequence is the synthesis of the left and
right shunt topologies. The extended perturbation is attached to both the nearest perturbation on the left and the
nearest perturbation on the right, and new perturbatiows are generated respectively to the left and the right, between
the perturbations maintained by the extension space. Once the shunts are computed, the tour lengths for the
extension space, the left shunt space, and the right shunt space are compared, and the minimal topology is preserved.
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At this point, the interchange operator is invoked once again to absorb cities from other perturbations, using the left
and right extension edges of the new city's position as a baseline perturbation. To wrap up the processing of the
city, some housekeeping operations are performed to commit the tour and its length to computer memory, before
returning to the input loop to process any remaining interior cities.

In •Call the interchange operator

m- on the city if a larger angle is

T found in preceding step

Form the left shunt space

Locate the perturbation
for which the elliptic Form the right shunt space
distance to the new city is F
mtinimal

f Compare the tour lengths for

Find the nearest city in the the left shunt space, the right
tour to the new city1 shunt space, and the extended

space

Attempt to locate another
interior city which forms a
larger angle with the
perturbed segment Call the interchange operator

_on the city, using the left and
right extension edges

Reorder the extended
perturbation for
intra-perturbation optimality Update the length of the tour

__and set the last-current-tour to
the current tour

Locate the tour segment |
which forms the largest
angle with the inserted city

Figure 4. A high level flowchart of the dynamic programming algorithm as currently
Implemented. For the sake of brevity, several comparison operations of complexity 0(11 have
been omitted. An Interchange operation (double box) Is relatively expensive; each Interchange
entails a quadratic matching, four sorts, and four linear searches.

As the kth city is processed, it is possible for it to trigger two searches of quadratic complexity, eight sorts,
each of complexity k*log k, and fifteen searches of linear complexity. All of the boxes in the flowchart represent
processes of linear complexity or faster, except for the two double boxes representing the interchange processes. The
interchanges are more expensive, in that they involve quadratic matching and sorting in a quest to globally merge
pcrturbations which may lie on opposite sides of the hull. Finally, there is a constant overhead ýos associated with
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the computer operating system and hardware suite. Therefore, the worst-case processing time tw is bounded by the

following cubic expression:

tw = I [2k 2 + 8k*logk + 15k + Cos)

! 216n*(n+1)*(2n+1) + 8/2n* (n+l) * logn + 1/2n*(n+l) + Cosn

= 2n 3 + 4n 2 *logn + 7/2n 2 + 4n*logn + (3/2+Cos)n.

Complexity theorists refer to such a bound as a ceiling function, because it is derived empirically from an
algorithm which has not yet been proven to be optimal, and in general must be considered inferior to a theoretical
bound on performance. Conversely, a floor function is obtained analytically from worst-case analysis of an
algorithm known to terminate with an optimal solution (usually, once a floor function is established by theory,
progress is rapid in bringing an algorithmic ceiling function down to converge upon the floor function). Since a
floor function has to date not been established for the Euclidean traveling salesman problem, it is necessary to
attempt to empirically lower the ceiling function by resorting to heuristic techniques. The operators depicted in the
flowchart are heuristic techniques designed to model the non-linear search space reported upon at [C2]. The intrapath
operators at the left represent the hyperbolic portion of the locus, while those on the right approximate the
discriminator for the fourth-order components. Many of the minor processing steps which are of sublinear
complexity are intentionally omitted, to afford the reader as concise a view as possible of the global logic. The
author wishes to stress that the implementation is at best a stopgap measure, which ý a useful research tool only
until more geometric facts about the search space become available. Indeed, the suggested implementation is already
obsolete, due to a new theorem with the potential to dispatch a significant portion of the interior cities during a fast
preprocessing step [C31.

An Experiment to Test the Validity of the Analytic Cubic Bound.

Tables 1-8 on the next page are a compilation of a set of experiments designed to test the validity of the
cubic bound developed in the preceding section of the paper. The algorithm as currently implemented was tasked
against sets of cities randomly distributed on a computer screen (the author used the computer mouse to rapidly input
a set of random points to the screen, which were then utilized as coordinates for a city database). The number of
cities simulated was allowed to vary from ten to forty-five, in increments of five. For a specific number of cities n,
ten sets of random data of size n were generated. Each set was processed by the dynamic programming algorithm,
and the following parameters were monitored by the computer operating system: space (the number of Lisp cons
cells, or computer words, consumed by the run); time (the number of seconds of central processing unit time
consumed by the run); and allocation (the number of seconds of CPU time devoted to dynamic reclaiming of
memory, using the Lisp garbage collector).

Only the CPU time (the central column of each dataset) was analyzed statistically. The sample mean,
variance, and standard deviation were computed for each set of CPU time data. In addition the best and worst run
time outliers were selected for each set. It was anticipated that the worst case outlier would be a good candidate to
compare against the cubic bound predicted by the analysis.

Figure 5 is a line graph of the experimental results. For the eighty runs of the algorithm listed in the
appendix, the best-case, average-case, and worst-case running times are plotted for each of the eight groupings of ten
cities. Also included in the same plot is the cubic bound; the bound is computed for each value of n, and is scaled
by the constant .0075 to render the graphic more compact in the ordinate dimension.

It is perhaps imprudent to extrapolate for values of n larger than those shown, but the cubic bound predicted
by the theory appears to be a reasonable ceiling function for the worst-case performance of the algorithm. Although
there is a gap between the bound and the worst-case outlier, there are valid explanations. One explanation is that an
insufficient number of samples were selected to see true worst-case behavior. Another explanation is that the author
was overly conservative when conducting a worst-case analysis of the computer code, causing the cubic bound to be
somewhat inflated. Yet another explanation is that a more judicious selection of a scalar multiplier of the cubic
expression could close the gap. The important thing to note is that the bound is visually well-correlated with the
worst-case plot, and that the general behavior of the two curves is markedly similar.
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Space Time Allocation Space Time Allocation

1 7337 12.599 3.380 1 102662 121.708 58.073
2 5943 9.739 3.689 2 101337 125.221 61.622
3 3271 5.717 1.480 3 92058 98.096 66.107
4 2772 4.879 0.000 4 108662 132.876 64.330
5 2539 4.342 1.267 5 104230 129.015 62.486
6 4726 8.155 2.326 6 108849 134.460 66.508
7 3641 6.437 1.579 7 82841 97.734 46.839
8 3314 5.714 1.630 8 103552 68.177 119.213
9 3245 6.021 1.427 9 84362 133.353 285.494
10 4192 7.116 1.399 10 101140 124.738 59.313

n = 10, X=-7.712, S2 =10.130, S=3.183 n = 30, X=116-538, S2 =469.822, S=21.675

1 10841 1 16.515 5.122 1 150861 185.943 10t.698
2 11926 16.248 8.381 2 121924 152.557 86.844
3 13918 20.285 7.593 3 161438 197.643 114.430
4 13347 18.926 8.388 4 186448 246.866 129.780
5 17042 23.476 9.775 5 163579 204.787 114.469
6 15003 20.873 9.793 6 161428 212.644 112.123
7 9214 13.009 5.688 7 178192 227.529 121.439
8 20864 31.220 11.403 8 214286 295.458 152.270
9 9755 13.709 6.302 9 180710 196.557 105.282
10 13369 19.800 7.806 10 156222 167.035 64.046

n = 15, X=19.406, S2=27.906, S=5.283 n = 35, X=208.702, S2 =1671.621, S=40.885

1 31893 39.953 18.919 1 209331 224.835 98.215
2 39848 52.327 23.654 2 241452 267.132 99.419
3 31961 41.991 19.001 3 206614 212.946 85.847
4 33496 44.131 19.732 4 263413 295.444 115.531
5 28844 36.980 18.365 5 295821 348.702 136.283
6 41600 50.265 28.959 6 239564 257.743 110.176
7 27420 36.007 17.767 7 229468 263.191 106.129
8 27191 34.494 17.022 8 223627 239.093 97.718
9 29502 37.315 17.940 9 216796 249.739 96.802
10 28340 35.103 18.456 10 210261 244.238 91.558

n = 20, X =40.857, S2 =39.732, S=6.303 n = 40, X =260.306, S2 =1492.335, S =38.631

1 63375 72.603 38.143 1 329234 389.722 244.246
2 50002 47.761 41.782 2 354376 411.498 156.177
3 48373 56.510 27.231 3 382554 490.126 179.530
4 52179 67.577 30.072 4 426650 593.475 208.267
5 53730 65.259 32.730 5 293465 301.532 114.221
6 63618 77.347 39.047 6 404882 505.157 173.208
7 67187 81.024 40.680 7 384530 530.231 278.536
8 64343 78.275 37.596 8 341033 413.296 213.390
9 62891 75.275 35.368 9 335337 389.147 196.894
10 49037 56.832 28.396 10 278591 344.297 178.995

n = 25, X=67.846, S2 =123.389. S=1 1.108 n = 45, X =436.848, S2 =8147.415, S=90.263

Tables 1-8. Space, Time, and Allocation Complexity for Eight Sets of ETSP Experiments

(n Is the number of cities per experiment; Space Is the number of Lisp cons cells cons~med by a run;
Time Is the number of seconds of CPU time consumed by a run; and Allocation is the time dedicated
to the Lisp garbage collector)
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Summary.

Some -very preliminary 3tatistical experiments on the worst c:.se behavior of an algorithm dcFigr-.,
prcvide an expct solution for the Euclidean traveling salesman prmblem indicate that the run time of" t'e tIg;,thrn is
i, fact bounded by an expression cubic in the number of cities. The algorithm is based on some re,'.',,t 'h•, ,.- 3
r,- idts pertaining to the non-linear search space for the Euclidean traveling salesman problem, and as such the
computer code has not yet reached an optimal level of matujrity. Nevertheless. it has proven useful to statstically
,ctmpare the performance of the dynamic programming algorithm against the cubic bound predicted by a .,-rv:ry
examination of the currently implemented software. The worst-case statistical outliers compiled for each• et of
,Ypcriments are indeed bounded by the cubic expression developed analytically from the current formal design
spccification of the algorithm. It is apparent that the science of statistics is invaluable with regard to gauging the
probabilistic performance of an algorithm versus its analytic tim' complexity bound.

Future Directions of the Research.

An entirely -dependent issue is whether or not the algorithm is admissible: i.e., whether it terminates with
an optimal solution It is desirable to attempt to prove that the dynamic programming technique is admissible; a
proof by induction seems promising. Thus far, the implementation is proceeding in the spirit of the Hungarian
mathematician Lakatos, who contended that a theory is never truly proven until sufficient time has passed such that
the community at large accepts tVh theory, based on the fact that counterexamples cease to be forthcoming from
empirical testing [ILl]. The implementation discussed in the paper is at a stage where counterexamples can still be
Found. However, the author feels that the counterexamples arc sufficiently trivial to be local rather than global,
which indicates that the problems remaining to be ironel out are details of implementation rather than profound
issues of conceptualization. It seems important to pursue the proof of optimality; otherwise, the new algorithm will
be vulnerable to the same kinds of criticism which plague all heuristic approaches to problem solving.

The algorithm will continue to undergo empirical testing, as the number of cities is scaled up. A good
source of benchmarks is maintained at reference [RI ]. As mentioned above, a one hundred twenty-seven city database
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has recently been solved to optimality by the dynamic programming algorithm. It is desirable in 1991 to move
ahead to a five hundred thirty-two city certified benchmark [P1]. Unfortunately, there are only a handful of large
databases for which a certificate of optimality has been obtained.

In preparation is a paper which describes a new geometric result pertaining to the aspect angle which an
interior city forms with the convex hull, and the positive implication of the result as a preprocessing step for the
dynamic programming algorithm [C31. It is premature to forecast the utility of the new theorem, but empirical
testing indicates that on the average a surprisingly large percentage of cities interior to the hull may be inserted into
the tour in a fast preprocessing step.
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